
International Journal of Theoretical Physics, Vol. 39, No. 3, 2000

Concrete Quantum Logics†
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Concrete quantum logics are quantum logics which allow for a set representation.
They seem to be of significant conceptual value within quantum axiomatics and
they play an important role in the theory of orthomodular structures as set-
representable orthomodular posets or lattices and they also sometimes constitute
a “domain” for investigations in “noncommutative” measure theory. This paper
presents a survey of recent results on this class of logics. Stress is put on the
algebraic and measure-theoretic aspects. Several open questions relevant to the
logicoalgebraic foundation of quantum theories are posed.

INTRODUCTION

A quantum logic—a “logic” of the events of a quantum experiment—is
often assumed to be an orthomodular poset [14, 51, 63]. In contrast to
“classical” logics (Boolean algebras), quantum logics do not have to allow
for a set representation. Those quantum logics which allow for a set represen-
tation are called concrete. The formal definition reads as follows.

1. Definition. A concrete (quantum) logic is a couple (V , D), where V
is a nonvoid set and D , exp V is a collection of subsets of V which is partially
ordered by inclusion and which is subject to the following requirements:

(i) 0⁄ P D.
(ii) A P D ⇒ V \A P D (here \stands for the set complement in V).

(iii) A P D, B P D, A ù B 5 0⁄ ⇒ A ø B 5 P D.

A concrete logic is represented by the collection D. However, very often

† This paper is dedicated to the memory of Prof. Gottfried T. Rüttimann.
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we have to refer to the underlying set V , too. Thus, we usually consider D
together with V and refer to the pair (V , D) as concrete logic. The following
simple but useful characterization of concrete logics is due to Gudder [14].
The proof could be done by the standard Boolean technique. [Recall that by
a state on a (general) quantum logic we mean a finitely additive probability
measure on it. Let us denote by 6(L) the set of all states on L, and by 62(L)
the set of all two-valued states on L.]

Proposition 1. Let L be a quantum logic. Then L is (isomorphic to) a
concrete logic if, and only if, L possesses an order determining set of two-
valued states [i.e., for each a, b P L, a # b, there exists a state s P 62(L)
such that s(a) 5 1 and a(b) 5 0].

1. WHICH LOGICS ARE NOT CONCRETE?

Obviously, the lattice of projections in a Hilbert space L(H ) is not
concrete whenever dim H $ 3. Indeed, L(H ) does not possess any two-
valued state (the fact that 62(L(H )) 5 0⁄ follows easily from the Gleason’s
theorem [10]; see also ref. 7 for a detailed analysis). There are even finite
logics which are not concrete. Some of them can be constructed as sublogics
of L(H ) [25, 59, 60]. Other examples can be constructed by the Greechie
pasting technique [12]. Figure 1 presents a typical one [26]. One can easily
find elements a, b of this logic such that the equalities s(a) 5 1, s(b) 5 0
cannot be simultaneously satisfied. Thus, this logic is not concrete.

2. WHICH LOGICS ARE CONCRETE?

The class of concrete logics is quite large. Let us demonstrate this by
exhibiting various examples. Some of them will be revisited later for a more

Fig. 1.
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detailed study. In accord with the general definition of state, a state on a
concrete logic (V , D) is a mapping s: D → ^0, 1& such that s(V) 5 1 and
s(A ø B) 5 s(A) 1 s(B), provided A, B P D and A ù B 5 0⁄ .

(1) Boolean algebras. A Boolean logic (i.e., a Boolean algebra) is a
concrete logic (the Stone representation makes each Boolean algebra a con-
crete logic). The states on Boolean algebras are exactly the finitely additive
probability measures.

(2) Subsets of an even cardinality—the logic Veven. Let V 5 {1, 2, . . . ,
2l 2 1, 2l} be a set of an even cardinality. Then (V , D), where D 5 {A.card
A is an even number}, is a concrete logic [14]. Let us denote it by Veven.
Observe that

(i) Veven is a lattice if and only if card V # 4.
(ii) If card V $ 6, then all two-valued states are “Dirac measures” (i.e.,

measures sitting at points [e.g., [44, 58]].
(3) Partitions into large sets together with singletons. Let V 5 {(x, y)

P R2.x2 1 y2 # 1}, and let A 5 {(x, y) P V.x $ 0}, B 5 {(x, y) P V.y $
0}. Then (V , D), where D 5 {0⁄ , V , A, A8, B, B8, finite subsets of V , cofinite
subsets of V}, is a concrete logic.

(4) Density logic. Let N 5 {1, 2, 3, . . . } be the set of natural numbers.
Let V 5 N and let D , exp V consists of those sets which have a density,
i.e., A P D if limn→` [card(A ù {1, 2, . . . , n})/n] exists. The function d:
D → ^0,1& defined by setting limn→` [card(A ù {1, 2, . . . , n})/n] 5 d(A)
becomes a state on D. (This construction can be generalized to measure
spaces with a s-finite measure. The density logic has interesting state exten-
sion properties, see Section 5.4).

(5) Rational area logics. Let V 5 ^0, 1&2, and let m be the Lebesgue
measure on V . Let

D 5 ^A.A , ^0, 1&2, A is m-measurable, m(A) is a rational number}

Then (V , D) is a concrete logic. As regards the states on (V , D), observe
the following fact, which is quite typical for concrete logics and which is
not shared by Boolean algebras: There are states on (V , D) which are not
subadditive. [Recall that a state s P 6(D) is called subadditive if for each
A, B P D there is a C P D such that C . A ø B and, moreover, s(C ) #
s(A) 1 s(B).] In fact, we can easily see that the following statement is true.
Let us fix a set D P D with m(D) . 0, and define the set function s:D →
^0, 1& by setting s(A) 5 m(A ù D)/m(D). Then s is subadditive if and only
if m(D) is a rational number.

(6) Infimum faithful logics. Let L be a (general) logic. Let L fulfil the
following condition [24]. Suppose a, b P L. Then a } b (a is compatible
with b in L [e.g., 63] if and only if a ∧ b exists in L. It can be proved that
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L is concrete [36]. Note that the previous examples (3)–(5) are infimum
faithful logics.

(7) The Kalmbach concrete logics. It can be shown that each lattice can
be lattice-theoretically embedded into a concrete lattice logic. This fact was
first observed by Kalmbach [21] and proved in detail by Harding [18] and
Navara [29].

(8) The free lattice logic with two generators is concrete. The free lattice
logic is a synonym for a free orthomodular lattice. The free orthomodular
lattice with two generators is concrete ([29]). This rather interesting fact does
not seem to be explicitly contained in monographs on algebraic theory of
orthomodular lattices [3, 22]. It is not known if the free orthomodular lattice
with three (and more) generators is concrete.

(9) Concrete lattice logics form a variety of algebras. Concrete lattice
logics form a variety when viewed as a class of orthomodular lattices [11].
This variety is not finitely based, but allows for a relatively transparent
equational description [26].

(10) Concrete logics and a group representation. Each group is an
automorphism group of a concrete (lattice) logic [37]. It is not known how
far one could go in generalizing this result, but, of course, the class of Boolean
algebras is too restrictive [13].

(11) Permanence properties of concrete logics. Concrete logics are
closed under the formation of sublogics, products and ultraproducts. They
also allow for a tensor product with Boolean algebras in the category of
concrete logics [8, 9, 55]. In particular, each concrete logic can be enlarged
to a concrete logic with a given center.

3. COMPATIBILITY (RESP. NONCOMPATIBILITY) RELATION
IN CONCRETE LOGICS

One of the conceptual advantages of concrete logics is that the physically
important compatibility relation can be transparently expressed (see Proposi-
tion 3.1 below). On the other hand, concrete logics may be intrinsically as
far from compatibility regular logics as general logics (for the definition of
regularity, see ref. 51, Def. 1.3.26).

Proposition 3.1 [51]. The collection A1, A2, . . . , An , D in a concrete
logic (V , D) is compatible if and only if for each n-tuple d 5 (d1, d2, . . . ,
dn) P {21, 1}n we have ùi#n Adi

i P D (as usual, we understand A1 5 A and
A21 5 A8). In particular, A } B in D ⇔ A ù B P D ⇔ A ø B P D (thus,
(V , D) is Boolean if and only if A ù B P D [resp. (A ø B P D)] for each
pair A, B P D).
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Proposition 3.2 [51]. Let n be a natural number, n $ 2. Let card V 5
2n. Then the concrete logic V even has the following property: There exists a
noncompatible collection {A1, A2, . . . , An) , V even such that each of its
proper subcollections is compatible. Thus, V2n is not regular for any n P N.

4. CLASSES OF CONCRETE LOGICS WITH PECULIAR
INTRINSIC AND MEASURE-THEORETIC PROPERTIES

This section offers further information on the richness of the class of
concrete logics. Let us consider the following classes:

• B the class of Boolean algebras
• B1 the class of all concrete logics which have all states subadditive
• B2 the class of all “compact-like” concrete logics: A logic (V , D) is

called compact-like if for any pair A, B P D there is a finite collection
{C1, C2, . . . , Cn} , D such that A ù B 5 øi#nCi

• B3 the class of all infimum faithful logics
• B4 the class of all concrete logics

Theorem 4.1 [36, 45]. We have the inclusions

B # B1 # B2 # B3 # B4

and all these inclusions are proper.

The most interesting assertion of the above theorem seems to be the
result that the inclusion B # B1 is proper. This may reach beyond the theory
of quantum logics. The result was established in ref. 45 with substantial help
from the techniques developed in refs. 27 and 34. The following questions
remain open.

(1) Can every logic be embedded, in a compatibility-preserving man-
ner, into a logic of the class B1? (This question may have bearing
on the quantum axiomatic. Since, as one checks easily, a subadditive
state is necessarily Jauch–Piron (see also ref. 45), a positive answer
to this question would often allow us to restrict to concrete Jauch–
Piron logics; Observe that the s-additive version of this problem
has been answered in the positive [6]).

(2) Let us call (V , D) s-complete if D is closed under the formation
of unions of countable pairwisely disjoint sets. If (V , D) is s-
complete and if it belongs to B1, does (V , D) have to be Boolean?
(If (V ,D) is 2N0 complete (5 continuum-complete), then the answer
is yes [45].)
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5. MORE ON CONCRETE LOGICS—ARE THEY “ALMOST”
BOOLEAN?

In this section we indicate some other lines of research on concrete
logics. The results obtained shed light on the relations of concrete logics to
general logics and Boolean algebras.

5.1. Constructions of Compact-Like Concrete Logics with Uniformly
Bounded Covering Type

Theorem [28]. Given a natural number n P N, there exists a concrete
logic (V , D) such that, for each couple A, B P D, A ù B 5 øi#nCi for some
{C1, C2, . . . , Cn} , D, and, moreover, there is a couple D, E P D so that
D ù E cannot be written as a union of strictly fewer than n sets of the logic D.

This result introduces a kind of covering dimension into the realm of
concrete logics. One deals with a new type of orthomodular combinatorics.
All constructions involved are infinite and nonlattice.

5.2. General Logics as Epimorphic Images of Concrete Ones

We have the following result (a version of the Loomis–Sikorski theorem
for logics).

Theorem [54]. Each logic is an epimorphic image of a compact-like
concrete logic, and, moreover, the epimorphism may be required such that
it preserves the compatibility relation in a weak sense (a logic morphism l:
L1 → L2 preserves the compatibility relation in a weak sense if for each
compatible set {b1, b2, . . . , bn} , L2 there is a compatible set {a1, a2, . . . ,
an} , L1 such that l(ai) 5 bi). On the other hand, if L1 is concrete and l:
L1 → L2 is a logic epimorphism which preserves compatibility in the stronger
sense (i.e., if all preimages of finite compatible sets are compatible), then L2

is concrete, too.

It does not seem to be known if the latter theorem remains true if we
require the weak preservation of compatibility for all (not only finite) sets.

5.3. Generalized Stone Representations.

A nonconcrete logic cannot be embedded into a concrete one, of course.
In the attempt to construct at least weaker kinds of embeddings, generalized
Stone representations have been investigated [19, 42, 49, 62, 65]. The most
complete treatment seems to be ref. 62, where one also finds some relevant
open problems.
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5.4. Extensions of States on Concrete Logics

Suppose that a concrete logic L is a sublogic of a logic K. Suppose that
s P 6(L). Then if L is Boolean, s can be extended over K ([PtExt]). If L is
not Boolean, the extension may not exist. It is slightly surprising, however,
that in some relatively complex non-Boolean cases we can find extensions.
Here is an example (an unpublished result of the author).

Theorem. Let H be a separable Hilbert space and let B 5 {bi.i P N}
be an orthonormal basis of H. Let D be the density concrete logic on B. Let
d be the density state on D (see Example 4 in Section 2). Then d can be
extended over L(H ).

5.5. How to Characterize the State Spaces of Concrete Logics?

A characterization of the state space (resp., a characterization of the
two-valued-state space) of concrete logics does not seem to be known. It is
easily seen, however, that not all compact convex subsets in ^0, 1&P, where
P is a set, may serve as state spaces of concrete logics. Also, it should be
observed that not all pure states on concrete logics have to be two-valued
[35]. This may occur even for finite concrete lattice logics [32].

5.6. Gudder’s Integral

An interesting study with concrete logics has been the research on
generalized integration [15]. Even for finite logics some original nontrivial
problems have appeared. Most of the questions have been significantly con-
tributed to or solved in refs. 15, 33, 35 and 61. The results culminated in a
remarkable paper by Gudder and Zerbe [16]. The latter paper inspired a
vast generalization [30], which, however, still did not reach a complete
characterization for the additivity of Gudder’s integral to hold [30, 31].

6. CONCRETE s-COMPLETE LOGICS

The concrete s-complete logics have been investigated in measure theory
ever since [e.g., 1, 17, 38]. Their alternative names have been s-classes,
Dynkin systems, etc. They proved to be instrumental in analysis and probabil-
ity. In this exposition we would like to introduce an interesting topical investi-
gation in concrete s-complete logics. It concerns the s-complete logics
generated by balls in metric spaces. The results could be applicable in other
areas of mathematics, and possibly within the foundation of quantum
mechanics.

Definition 6.1. A concrete logic (V , D) is called s-complete if it is
closed under the formation of unions of countable pairwise disjoint families
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of sets from D. By a state on the s-complete concrete logic (V , D) we then
mean a countably additive probability measure on D.

Obviously, given a subset S of exp V , there is a smallest concrete s-
complete logic (V , Ds(S)) which contains S. Let us call it the logic generated
by S. This logic may or may not coincide with the Boolean s-algebra (on
V) generated by S. When it does, we easily see that if two probability
measures m1, m2 agree on S, they must agree on the entire ((S). Indeed, it
is easy to check that if two states on Ds(S) agree on S, they must be identical.
Let us ask when Ds(S) 5 ((S). Here are a few results on how the situation
looks in Rn when we make a natural choice of S.

Suppose that S is a basis for open sets in Rn. Then ((S) coincides with
all Borel sets. If S is multiplicative (i.e., if S is closed under the formation
of intersections), then it can be shown that Ds(S) 5 ((S) [e.g., 39]. Thus, if
S consists of open rectangles, which seems to be the most natural choice for
S, the situation is clear. A less clear situation occurs when we make the
second most natural choice for S—the set of all open balls. Then we face
an interesting and quite nontrivial problem. This problem was partially solved
by Olejček [40, 41] and then fully resolved independently by Zelený [64]
and Jackson and Mauldin [20]. It should be noted that if we formulate the
same question in a general metric space taken instead of Rn, the answer can
be in the negative even for a compact 0-dimensional space [5].

Theorem 6.2 [20, 41, 64]. Let S be the collection of all open balls in
Rn. Then Ds(S) 5 ((S). Thus, the logic Ds(S) coincides with the s-algebra
of Borel sets. A corollary: If two probability Borel measures agree on all
open balls in Rn, they have to be identical.

It should be noted that the corollary remains true even if we do not
assume the probability Borel measures to agree on all balls, but only on a
suitable subcollection. Also, the corollary may remain true even in spaces
where Ds(S) Þ ((S). It follows from the following results [see ref. 53; the
technique therein allows for generalizations to a separable Hilbert space;
observe that Ds(S) Þ ((S) in this case].

Theorem 6.3 [53]. Let H be a separable Hilbert space and let p P H.
Let S be the collection of all open balls which have the point p in their
boundary. Then, if two probability Borel measures on B(H ) agree on S, they
have to be identical.

It does not seem to be known if Theorem 6.3 can be generalized to the
case of all Banach spaces. It should be observed, however, that the corollary
formulated in Theorem 6.2 remains true even for all Banach spaces. This
remarkable result was recently proved by Preiss and Tišer [43]. Let us formu-
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late it in the conclusion of this survey. It should be observed that the attempt
to obtain this result via Ds(S) 5 ((S) would be in vain—in ref. 23 the authors
show that Ds(S) Þ ((S)(5 Borel set) even for a Hilbert space (see also ref.
56 for other results in this line).

Theorem 6.4 [43]. Let B be a separable Banach space and let two
probability measures m1, m2 on the Borel algebra of B agree on the collection
of all open balls in B. Then m1 5 m2.

ACKNOWLEDGMENTS

The author acknowledges the support of Grant GAČR 201/98/1153 of
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[64] Zelený, M., The Dynkin system generated by balls in Rd contains all Borel sets, to appear.
[65] Zierler, N., and Schlesinger, M., Boolean embeddings of orthomodular sets and quantum

logics, Duke Math. J. 33 (1965), 251–262.


